Classification of Log Del Pezzo Surfaces of Index Two

نویسنده

  • NOBORU NAKAYAMA
چکیده

In this article, a log del Pezzo surface of index two means a projective normal non-Gorenstein surface S such that (S, 0) is a log-terminal pair, the anti-canonical divisor −KS is ample and that 2KS is Cartier. The log del Pezzo surfaces of index two are shown to be constructed from data (X,E,∆) called fundamental triplets consisting of a non-singular rational surface X, a simple normal crossing divisor E of X, and an effective Cartier divisor ∆ of E satisfying a suitable condition. A geometric classification of the fundamental triplets gives a classification of the log del Pezzo surfaces of index two. As a result, any log del Pezzo surface of index two can be described explicitly as a subvariety of a weighted projective space or of the product of two weighted projective spaces. This classification does not use the theory of K3 lattices, which is essential for the classification by Alexeev–Nikulin [3]. The comparison between two classifications is

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Combinatorial Classification of Toric Log Del Pezzo Surfaces

Toric log del Pezzo surfaces correspond to convex lattice polygons containing the origin in their interior and having only primitive vertices. An upper bound on the volume and on the number of boundary lattice points of these polygons is derived in terms of the index l. Techniques for classifying these polygons are also described: a direct classification for index two is given, and a classifica...

متن کامل

ec 2 00 4 CLASSIFICATION OF LOG DEL PEZZO SURFACES OF INDEX ≤ 2

This is an expanded version of our work [AN88], 1988, in Russian. We classify del Pezzo surfaces over C with log terminal singularities (equivalently, quotient singularities) of index ≤ 2. By classification, we understand a description of the intersection graph of all exceptional curves on an appropriate (somewhat stronger than minimal) resolution of singularities together with the subgraph of ...

متن کامل

ar X iv : m at h / 04 06 53 6 v 2 [ m at h . A G ] 5 S ep 2 00 4 CLASSIFICATION OF LOG DEL PEZZO SURFACES OF INDEX ≤ 2

This is an expanded version of our work [AN88], 1988, in Russian. We classify del Pezzo surfaces over C with log terminal singularities (equivalently, quotient singularities) of index ≤ 2. By classification, we understand a description of the intersection graph of all exceptional curves on an appropriate (somewhat stronger than minimal) resolution of singularities together with the subgraph of ...

متن کامل

ar X iv : m at h / 04 06 53 6 v 3 [ m at h . A G ] 1 8 O ct 2 00 4 CLASSIFICATION OF LOG DEL PEZZO SURFACES OF INDEX ≤ 2

This is an expanded version of our work [AN88], 1988, in Russian. We classify del Pezzo surfaces over C with log terminal singularities (equivalently, quotient singularities) of index ≤ 2. By classification, we understand a description of the intersection graph of all exceptional curves on an appropriate (somewhat stronger than minimal) resolution of singularities together with the subgraph of ...

متن کامل

2 00 5 Classification of Log Del Pezzo Surfaces of Index ≤ 2

This is an expanded version of our work [AN88], 1988, in Russian. We classify del Pezzo surfaces over C with log terminal singularities (equivalently, quotient singularities) of index ≤ 2. By classification, we understand a description of the intersection graph of all exceptional curves on an appropriate (so-called “right”) resolution of singularities together with the subgraph of the curves wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006